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Abstract—Primality generation is the cornerstone of several essential cryptographic systems. The problem has been a subject of deep
investigations, but there is still a substantial room for improvements. Typically, the algorithms used have two parts – trial divisions
aimed at eliminating numbers with small prime factors and primality tests based on an easy-to-compute statement that is valid for
primes and invalid for composites. In this paper, we will showcase a technique that will eliminate the first phase of the primality testing
algorithms. The computational simulations show a reduction of the primality generation time by about 30% in the case of 1024-bit RSA
key pairs. This can be particularly beneficial in the case of decentralized environments for shared RSA keys as the initial trial division
part of the key generation algorithms can be avoided at no cost. This also significantly reduces the communication complexity. Another
essential contribution of the paper is the introduction of a new one-way function that is computationally simpler than the existing ones
used in public-key cryptography. This function can be used to create new random number generators, and it also could be potentially
used for designing entirely new public-key encryption systems.
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1 INTRODUCTION

ADDITIVE number theory is a fascinating area of
mathematics. In it one can find problems with

extreme difficulties that can be posed in a relatively simple
way. Goldbach or twin-primes conjectures are, perhaps,
the simplest examples. One of the most challenging
problems in modern number theory is the abc-conjecture,
which can be posed as: the equation a + b = c where
GCD(a, b) = 1 does not have large solutions in numbers
with only small prime factors. Benne de Weger’s thesis
[1] provides a large number of fascinating specific
numerical facts that highlight the properties of numbers
with small prime factors only. For example, the equation
x + y = z has exactly 545 solutions in numbers of the
form 2a · 3b · 5c · 7d · 11e · 13f such that GCD(x, y) = 1
– the largest one being 21 · 311 · 51 + 71 · 131 = 116.
Numbers without large prime factors are usually called
smooth numbers. They have substantial use in various
cryptographic primitives [2]–[5] as a tool to speed up
specific operations (e.g., point multiplications over various
types of elliptic curves) and also as a cryptanalytic tool (e.g.,
in the implementation of several algorithms for factoring
and discrete logarithm problem).

In this paper we will outline some properties of the
smooth numbers and showcase how they can be used
to improve the speed of various primality generation
algorithms (see Section 1.1), and, based on that, propose a
one-way function which may be used to build new public-
key encryption schemes (see Section 1.2).
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1.1 Fast generation of prime numbers

The generation of prime numbers is a cornerstone of
cryptographic systems such as the RSA cryptosystem.
Although this problem has been deeply researched in the
past [6], in this paper we show that further optimizations
are possible, which may be of great interest especially in
decentralized environments.

Typically, the algorithms for primality generation have
two parts: (i) trial divisions aimed at eliminating numbers
with small prime factors, and (ii) primality tests based
on an easy-to-compute statement that is valid for primes
and invalid for composites. In this paper, we exploit the
properties of smooth numbers to generate large random
numbers that are void of small prime factors up to a
particular limit. For example, if we are interested in
generating 1024-bit primes, our algorithm can quickly
produce a random number that is not divisible by the first,
say, 100 primes. The existing primality testing algorithms
usually implement trial divisions by small potential prime
divisors of the number-to-be-tested before applying more
powerful tests (e.g., Rabin-Miller [6] or Solovay-Strassen [7]
tests). The point of the trial divisions is clear as there is
no need to use expensive modular exponentiation-based
primality testing for numbers that are obviously divisible
by, say, 3 or 5.

What is the maximum number of trial divisions of the
algorithm one should perform? Surprisingly, it seems that
this simple question has not been yet addressed by the
computational number theory community. If we apply the
trial division part for the first, say, 10,000 primes, and the
number passes this first test, it has a higher chance to be
a prime in comparison to a randomly selected odd integer.
But the trial division part of such an algorithm will require
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a considerable amount of time. Instead of determining the
optimal upper bound for the number of tested small prime
divisors, we offer an algorithm that generates large random
numbers that are not divisible by small primes up to a
given limit. The algorithm can be used in both a centralized
and a decentralized environment. The decentralized case
is important for optimizing the implementation of Boneh-
Franklin algorithm for efficient generation of shared RSA
keys. This is extremely critical in many of the existing
current blockchain architectures [8], [9].

1.2 Alternative usages of smooth numbers

Whilst the usage of smooth numbers to speed up the
primality generation provides a concrete and usable
application, with this paper we aim to open areas for other
potential uses of the smooth numbers in cryptographic
applications. For instance, we conjecture that smooth
numbers can be used to build a very simple one-way
function. This new one-way function can be viewed as
a dual computational problem to the factoring problem.
One application is mathematically guaranteed to exist. A
very powerful theorem by Hastad et al. [10] rigorously
demonstrates that any one-way function can be used to
build an efficient pseudo-random number generator. Exactly
how this has to be done for our one-way function remains
to be researched. Even more interesting is to investigate if
one can obtain a public-key encryption scheme based on this
function in a way, similar to the RSA algorithm.

1.3 Outline

Our paper is structured as follows:
• Section 2 discusses the main properties of the

smooth numbers – density, difference between smooth
numbers, and minimal representations.

• Section 3 introduces the new one-way function and
compares the complexity of the associated forward
(easy) and backward (hard) computational problems.

• Sections 4 and 5 are dedicated the new primality
generation algorithm, based on the use of smooth
integers.

• Section 6 describes practical considerations when our
algorithm is implemented in specific applications.

• Sections 7 and 8 discuss open problems and conclude
the paper.

2 SMOOTH NUMBERS

2.1 Definitions and properties

We introduce the following definitions:

Definition 1 (s-integers). An integer number is called an s-
integer if its largest prime factor is smaller than or equal to
the s-th prime.

Definition 2 (Smooth integers). Numbers with only small
prime factors, i.e., s-integers with s small, are called smooth
integers.

Before going into more general considerations, we show
examples and properties of 1- and 2-integer numbers:

• The perfect powers of 2 are 1-integers (their largest
prime factor is 2).

• Representation of an integer as the sum of different
1-integers is simply their binary representation. The
representation is unique.

• The numbers from the sequence 1, 2, 3, 4, 6, 8, 9, 12, 16,
18, 24, 27, 32, 36, 48, 54, 64, 72, 81, 96, . . . , are 2-integers,
since their largest prime factors is at most 3 (the second
prime).

If one wants to represent an integer number as the sum
of 2-integers, there are many possible representations. For
example, 100 has exactly 402 different representations as the
sum of 2-integers. The shortest ones are 100 = 96 + 4 =
64 + 36. The number of different representations of a given
integer as the sum of numbers of the form 2a · 3b (that
is, 2-integers) can be predicted with extreme accuracy. For
example, 40,000 has exactly 2,611,771,518,060,603 different
representations. This is proven from the following formula
for p(n), where p(n) defines the number of different
representations of n, and as the sum of 2-integers:

p(n) =

{
p(n− 1) + p(n/3) if n ≡ 0(mod 3),
p(n− 1) otherwise.

This particular recursive equation was investigated
by [11] and an extremely accurate approximation of p(n)
was obtained by [12]. A less accurate approximation of
log p(n) is given by

log p(n) ≈ log2 n

2 · log 3
. (1)

The most interesting representations are the sparsest
ones (in a previous example we pointed out that for number
100, the sparsest representations are 96 + 4 and 64 + 36,
requiring only two terms). The following theorem provides
good information about the sparsity of the multiple-base
representations:
Theorem 1 [13]. Let n be a positive integer. Then, it can be
represented as the sum of at most O

(
logn

log logn

)
2-integers.

Some facts about the sparsity of the representation of
integers as the sum of 2-integers:

• 23 is the smallest integer that cannot be represented as
the sum of two 2-integers;

• 431 is the smallest integer that cannot be represented as
the sum of three 2-integers;

• 18,431 is the smallest integer that cannot be represented
as the sum of four 2-integers;

• 3,448,733 is the smallest integer that cannot be
represented as the sum of five 2-integers

• 1,441,896,119 is the smallest integer that cannot be
represented as the sum of six 2-integers.

In other words, any 30-bit integer can be represented as
the sum of at most six numbers of the form 2a3b, where a, b
are non-negative integers.

2.2 The density of smooth integers
The number of 2-integers less than x is approximately:

ln2 x

2 ln 2 ln 3
. (2)
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The number of 3-integers less than x is approximately:

ln3 x

6 ln 2 ln 3 ln 5
. (3)

The number of 4-integers less than x is approximately:

ln4 x

24 ln 2 ln 3 ln 5 ln 7
. (4)

Trivially, by extending the size of s, we can reduce the
number of terms necessary to represent integers as the sum
of s-integers. Many of the main theoretical properties of
the smooth integers stem from the transcendental number
theory and the theory of linear forms of logarithms. We will
present some of the most essential ones here:

Theorem 2 [14]. Let x and y be two consecutive s-integers (x >
y). Then their differences is bounded from above and below:

x

logc1 x
< x− y < x

logc2 x
, (5)

where c1 and c2 are effectively computable constants.
Many results can be proved from this theorem. For

example, one can prove that the multiplication by an n-bit
constant can be achieved by using a sub-linear number of
additions only, i.e., n

logn .

The following theorem provides information about the
representation of integers as the sum of s-integers (see
Appendix for an example):

Theorem 3 [13]. Every integer n can be represented as the sum
of, at most, O

(
logn

log logn

)
s-integers.

Sketch of proof. Consider the case s = 2, that is representing
n as numbers of the form 2a · 3b. According to Eq. (2),
we know that the number of 2-integers in the interval
[2k−1, 2k] is approximately 0.63 · k. Theorem 2 guarantees
that they cannot be concentrated in a cluster. Therefore,
if one applied a greedy algorithm to find a suitable
representation, after subtracting n minus the closest 2-
integer, we will get a number withO(log log n) bits less in its
binary representation. Repeating the same procedure, one
gets the bound in the above theorem. Please note that greedy
algorithms in this case do not guarantee minimization,
but the representations obtained by them is nevertheless
asymptotically optimal.

The theorem, however, does not tell us anything about
the constant associated with big-O notation. Experimental
and probabilistic evidence suggests that it is probably equal
to 2/s (see Table 8). This means that if s is relatively large,
then we might anticipate the representation of integers as
the sum of very few smooth integers. When is very few
expected to become 2? That is, under what condition an integer
n can be written as the sum of two smooth integers?

Conjecture 1. Let n be an integer. Then, there exists a pair of
integers a and b such that a+ b = n and their largest prime
factor is O((log n)2+ε), where ε is any positive number.

We call this conjecture anti-Goldbach. The original
Goldbach conjecture states that every odd integer can be
represented as the sum of three primes (proved for every
sufficiently large odd number in 1937 by Vinogradov and

unconditionally by [15]). Also, every even integer is the
sum of two primes (still unproven). Prime numbers have the
largest possible prime factors (themselves), whereas smooth
numbers have only small prime factors, thus, the name of
the conjecture.

2.3 Sum of smooth numbers

The problem of representing numbers as sums of smooth
integers was firstly considered by Erdös and Graham in
[16]. It is very interesting to point out that in the case of
representing every sufficiently large integer as the sum of
three smooth numbers, sharper bounds for the smoothness
of the summands are known, as opposed to the case of the
sum of two smooth numbers. Here we summarize the main
known bounds – proved and conjectured:

Theorem 4 [17]. Denote P (x) as the largest prime factor of x.
Then for every sufficiently large integer N = n1 + n2, it holds
that

P (n1 · n2) ≤ N
4

9
√

e
+ε

= O(N0.26957).

A much stronger bound was conjectured by Erdös [16]:

Conjecture 2. If N = n1 + n2, then

P (n1 · n2) ≤ exp{c ·
√
logN log logN}, (6)

where c is an effectively computable constant.

If we consider the representation of sufficiently large
integers as the sum of three smooth numbers, then the best
known upper bound is:

Theorem 5 [18]. If N = n1 + n2 + n3, then

P (n1 · n2 · n3) ≤ exp

{√
3/2 + ε ·

√
logN log logN

}
. (7)

It is very interesting that in the case of three smooth
integers it is also possible to prove lower bounds:

Theorem 6 [18]. Let ε > 0 be fixed. Then, for every integer
N ≥ N0(ε), there exist an integer n ≤ N , such that every
representation of n as n1 + n2 + n3 satisfies the condition

P (n1 · n2 · n3) ≥ (logN)
3
2−ε.

It is believed (Sárközy) that the truth is much closer to
the lower bound, but rigorously proving this will require
radically new techniques. Our conjecture is that, in the case
of two smooth numbers, the exponent of logN in the last
mentioned theorem is as low as 2. The rigorous proof of
this seems considerably more difficult than the proof of
Sárközy’s bound.

3 THE SIMPLEST ONE-WAY FUNCTION

One-way functions are the cornerstone of the public-key
cryptography. For example, the RSA algorithm is based
on the conjectured difficulty of factoring problems. The
full definition of these one-way function should take into
account the complexity of producing two big primes and
not only the complexity of their multiplication. Modern
computational number theory offers a variety of algorithms
for generating big primes, but any of these algorithms
requires a large number of multi-word divisions and they
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TABLE 1
Complexity comparison between the most popular one-way functions and the proposed one (in italic).

One-way function Input data Forward operation Output complexity

Factoring Two big primes One multiplication O(e
3
√

(log x)(log log x)2 )

Discrete Logarithm Problem One big prime p and a generator of
the group GF (p)

One modular exponentiation O(e
3
√

(log x)(log log x)2 )

Elliptic Curve Discrete Logarithm
Problem

An elliptic curve over a finite field
GF (p) and a point on that curve

One elliptic curve point
multiplication O(

√
2x)

Smooth integers (Problem 1) Two smooth numbers One addition O
(
e
(log 4) log x

log log x

)
[19]

are time consuming.

The situation is drastically different, if we work with
smooth integers. Whilst it is really easy to produce two large
smooth numbers (much easier than, say, to generate two big
primes), it appears to be very difficult to solve the following
problem:

Problem 1 (Reversing the sum of two smooth numbers).
Given an integer n, find a representation of n as the sum of
two smooth numbers with the largest prime factor bounded
by O((log n)2+ε), where ε is any positive number.

This seems to be the simplest one-way function known
so far, since indeed the generation of the input (smooth)
numbers and their addition requires practically no efforts
at all, whereas solving the reverse problem seems rather
difficult. One can use the LLL algorithm [20] to find a
smooth number (say, x) close to n, but the probability that
n− x will be also smooth is negligible.

Table 1 summarizes the main characteristics of the most
widely used one-way functions and the corresponding
complexity figures of merit. It is important to take into
account not only the time needed to solve the inverse (hard)
problems, but also the time needed to produce the input
data and the complexity of the forward (easy) problems.

4 GENERATING RSA KEYS

The RSA algorithm requires the generation of two large
prime numbers that serve as a secret key for a user. Hence,
a fundamental component of RSA key generation is given
by primality testing algorithms. In Section 4.1, we provide
some relevant background information about primality
testing algorithms and their computational complexity.
Then, in Section 4.2, we briefly outline the primality
generation problem and our proposal based on the use of
smooth integers.

4.1 Primality testing algorithms

One of the most important problems in computational
number theory is the problem on primality testing:

Problem 2 (Primality testing). Given a large integer p,
determine whether it is a prime or a composite number.

For large prime numbers, it is clear that the exhaustive
search algorithm that tests all the potential prime divisors
of p is computationally infeasible. In this section we review
the most relevant algorithms used to test primality.

Fermat’s Little Theorem. One can test if

2p−1 ≡ 1(mod p)

and, if so, then either p is a prime or p is a 2-pseudoprime
according to the Fermat’s Little Theorem (FLT). The smallest
composite number, for which this test fails is 341. One can
substitute 2 with larger values, but still there is a set of
composite numbers, called Carmichael numbers, for which
the test produces an incorrect answer. The fact that the set
of Carmichael numbers is infinite has been established in
1994 [21].

Rabin-Miller primality test. So, instead of using FLT-based
tests, we can use more precise Rabin-Miller primality test.
If in computing ap−1(mod p) one gets “1” as an answer,
the algorithm performs a “forensic” investigation on how
exactly this outcome 1 has been obtained. In this case,
the one can use only a very small number of witnesses
in order to test the primality of p, but the proof that only
small number of witnesses is sufficient depends on the
correctness of the extended Riemann hypothesis.

Solovay-Strassen primality test. The Solovay-Strassen
primality testing algorithm is based on a very simple idea:
to test if p is a prime number, one computes a

p−1
2 and

compares this to the value of the Jacobi symbol
(
a
p

)
. If p

is a prime number, the value of the Jacobi symbol is the
same as the value of the Legendre symbol

(
a
p

)
. If p is not a

prime, then these two values are the same with at most 50%
probability. The entire point of the algorithm is that there is
no need to factorize p in order to evaluate the Jacobi symbol.
So, if the algorithm is executed for, say, 100 values of a and
in all the cases

a(p−1)/2 ≡
(
a

p

)
(mod p), (8)

then we can claim that p is a prime with probability at least
1−2−100 [22]. The biggest drawback of this algorithm is the
necessity to compute the Jacobi symbol, which involves a
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large number of GCD computations, and is the chief reason
why it is rarely used in practice.

Generalized Fibonacci-based primality test. A similar
algorithm is based on the following interesting property
of Fibonacci numbers: For every prime number, except 5, the
following congruence holds:

Fp2−1 ≡ 0(mod p).

Since the value of Fp2−1(mod p) can be obtained in
O(log p) operations [23], [24], the algorithm is attractive.
Again, it fails for very few, specific composite numbers,
called Fibonacci pseudo-primes – the smallest one being 161.

4.1.1 Computational complexity of primality testing
In Table 2, we evaluate the computational complexities to
test the primality of p for the methods described above.
According to our analysis, it is clear that Rabin-Miller’s
approach is superior:

• When comparing Rabin-Miller and Solovay-Strasses
tests, we notice that the latter technique requires the
same number of modular multiplications plus ln p
evaluations of the Jacobi symbols, which requires
approximately the same computational time.

• Fibonacci-based primality testing is implemented by

exponentiating the matrix
(
1 1
1 0

)
to the power of

p. The constant in our estimation, 10.5, is based
on the assumption that one uses Strassen’s matrix
multiplications algorithm1.

Therefore, Rabin-Miller is about twice faster than Solovay-
Strasses test and about seven times faster than generalized
Fibonacci-based primality test. This basically makes Rabin-
Miller’s test as the de-facto standard in the primality testing
field. A similar analysis can be found in the article [25].

TABLE 2
Complexity to test the primality of p (MM stands for modular

multiplications).

Primality test Complexity

Rabin-Miller 1.5 · ln p · log2 p (MM)

Solovay-Strasses 1.5 · ln p · log2 p (MM) + ln p (Jacobi symbols
estimation)

Fibonacci-based 10.5 · ln p · log2 p (MM)

For the sake of completeness, we should also mention
that the complexities mentioned in Table 2 are based on
the correctness of the extended Riemann hypothesis. In
2004, in their famous article “PRIMES is in P”, Agrawal
et al. [26] found a primality testing algorithm that works
in polynomial time for which computational complexity
analysis does not depend on any unproved hypothesis.
The initial version of the algorithm has a complexity of
O(log12 p), and subsequently improved to O(log6 p) after
the efforts of many researchers in the field.

1. The use of standard matrix multiplications algorithm will increase
this constant to 12.

4.2 Primality generation problem

The following problem is of a fundamental importance in
fields like hashing, public-key cryptography, and search of
prime factors in large numbers:

Problem 3 (Generation of large primes). Find a large
number p which is prime.

While the primality testing is provably computationally
tractable in deterministic polynomial time, for the primality
generation we have to assume some strong number-
theoretic conjectures to prove the computational efficiency.
Even assuming the correctness of the Riemann hypothesis
is not enough. But there is conjecture [27] that states:

Conjecture 3. There is at least one prime in the interval
[x, x+ ln2 x].

Assuming the correctness of this conjecture and the
existence of efficient primality testing algorithms, we can
easily deduce that the primality generation problem is
solvable in polynomial time.

4.2.1 Fast primality generation based on the use of smooth
integers
The algorithms that are used in the public-key encryption
systems to generate prime numbers are based on the
following general ideas:

• Trial division of the prime number candidate aimed at
detecting small prime divisors; the upper limit can be
set by the programmer, but in the case of decentralized
RSA key generation it is commonly assumed to perform
divisions by the first 150 primes and check if none of the
divisions produces a residue 0.

• Apply one of the existing probabilistic primality
testing algorithms for the numbers that “survive” (see
Section 4.1).

The trial division part is often overlooked from the
analysis. However, it is important to point out that the first
part of the testing procedure is actually not negligible. In
fact, it requires a very large number of multi-word divisions
and, depending on the limit of the small primes to be
tested, it may take up to 30% of the actual timing of the
entire primality generation procedure (see Section 5.2). For
instance, the primality testing algorithms used by Ligero
MPC protocol [28] test the first 150 primes (that is, up to
863). More to the point, in the case of decentralized RSA
key generation, different nodes are required to produce
different numbers and their sum is supposed to be a prime
number. If the numbers produced fail to deliver a prime
number, the process is repeated.

The properties of the smooth numbers allow us to
produce a new algorithm, that can produce RSA keys faster
than the existing ones by removing the need for the trial division
part. In Section 5, we will provide experimental evidence
of the improvements provided by our algorithm against
standard primality generation techniques. As mentioned,
the idea is to generate smooth numbers to remove the trial
division part. Let us consider the set of first 100 primes. Let
us also divide this set into two subsets that do not have a
common element. For example, S1 = 2, 5, 11, 17, 23, . . . and
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S2 = 3, 7, 13, 19, 29, . . .. Then we generate a set of small
random integer exponents ri, e.g., from the interval [1, 4].
Now we produce two smooth numbers:

a = 2r1 · 5r3 · 11r5 . . . and b = 3r2 · 7r4 · 13r6 . . .

Then, the sum a + b is for sure not divisible by the first
100 primes. So, it has considerably higher chances to be a
prime in comparison to a randomly selected number of the
same size.

4.2.2 Extension to more than two smooth numbers
As we have pointed out above, in the case of decentralized
RSA key generation there is a need to generalize the
solution to more than two smooth numbers. Namely, to
produce several (say, a few dozens) random integers, d1,
d2, . . . , dk, in a way that their sum will be prime. The above
outlined solution for the case k = 2 (two smooth integers
only) can be easily generalized to any k > 2.

Here is one possible solution: let the pair (d1, d2) be
generated in the way outlined above. For the other numbers,
d3, d4, . . . , dk, we use smooth numbers of the form:

di = 2h1 · 3h2 · 5h3 · 7h4 · 11h5 . . . ,

where the exponents hi are randomly chosen integers from
the set [1, 2]. The reason why we use the set [1, 2] is that in
the selection of d1 and d2 we used only half of the first 100
primes with exponents in [1, 4]. For the rest of the integers
we use all the primes and random exponents 1 or 2; in this
case, the sizes of all numbers will be compatible.

4.2.3 Theoretical bounds
The theoretical bounds for the number of smooth integers
that have to be used are based on the following
considerations. Suppose that we would like to generate a
k-bit prime number (typically, k = 512, 1024, 2048). So, we
have to find how many small primes one needs to multiply
in order to obtain a number larger than 2k. This can be
quantified by using the following Theorem, proved by
Sándor and Verroken:

Theorem 7 [29]. Let s(n) denotes the geometric mean of the
product of the first n-primes. Then

lim
p(n)

s(n)
= e,

where p(n) is the n-th prime.
This theorem allows us to obtain a closed formula for

the expected number of smooth integers that have to be
used as a function of the size of the key-to-be-generated:
if we have to generate a k-bit RSA key, then it is sufficient
to use the first k/ ln k small primes to produce the smooth
numbers in our algorithm.

In Table 3, we compare the theoretical bounds and
the exact results from the numerical simulations. One can
immediately make the following conclusions:

• The number of small primes required by our smooth
numbers techniques is slightly smaller than the number
predicted by the theory.

• The difference can be explained if one follows very
carefully the proof of the theorem from the paper above.

Our understanding is that for a practical application
of our algorithm, the users of this technique do not
have to become experts on analytic number theory. The
main point of the article is to provide the algorithm
in as understandable as possible format and, for more
mathematically oriented readers, we provide more than
enough references to get deeper into this fascinating issue.

TABLE 3
Theoretical and experimental study of the number small primes needed

depending on key size.

Key size (in bits) 512 1024 2048

Theoretical prediction for the number
of small primes needed 82 148 269

Exact bounds based on computational
experiments 75 135 239

5 EXPERIMENTAL PERFORMANCE ANALYSIS

In this section, we validate the benefits of our algorithm
compared to the state-of-the-art techniques in primality
generation. In Section 5.1, we analyse the probability of
a smooth integer to be prime, and we compare it with a
random number; then, in Section 5.2, we study the actual
savings of the primality generation procedure; finally, in
Section 5.3, we provide a discussion on how to interpret
our experimental results, highlighting the fact that our
algorithm always provides improvements (some times more,
some times less) compared to standard techniques.

5.1 Probability of generating a prime

We used the first 148 primes for our test and the parameters
provided above to produce one million pairs of smooth
numbers, a and b, and test the primality of their sum. The
size of the numbers produced is, on average, 1024 bits as
shown by Table 3.

The prime number theorem says that the density of
primes less than a given bound x is x

ln x . So, if x is 21024,
the probability that a randomly selected number less than x
would be prime is about 1 in 710. Since we will test only
odd numbers, obviously we have a chance about 1 in 355
(0.28%) to find a prime2.

On the other hand, the numbers produced as the sum
of two smooth numbers have a chance for primality around
2%. In order to estimate the probability that an integer less
than x is free from prime factors larger than y, we can use
theorems from de Bruijn [30] or Hildebrand [31]3. Based on
those, the probability that a randomly chosen integer less

2. Primality testing algorithms normally requires up to a few
hundred microseconds, it is reasonable to expect that in a sub-second
period, we will be able to obtain a prime number of this size.

3. Interestingly, the two papers have exactly the same title.
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than x does not have prime factors larger than y is given by
the formula:

P[n ≤ x, P (n) < y] =
exp(−u/2)

log y
,

where u = log x/ log y and P (n) denotes the largest prime
factor of n. In our case x can be taken as 21024 and y is
the limit we impose on the largest prime factor in the trial
division part of the algorithm. If we take the same estimates
as in the case of typical decentralized RSA key generation
algorithms (e.g., 1024-bit primes, therefore, x = 21024, y =
853), then we obtain the bounds mentioned above [32].

5.2 Savings in the number of modular exponentiations
The trial division part tests if the number is divisible
by a small prime up to a given level and, after that, one
applies a primality testing algorithm. Rabin-Miller, Solovay-
Strassen, Fermat and Fibonacci-based tests all use modular
exponentiations. Hence, it is essential to know – as much
accurately as possible – the time ratio between one modular
exponentiation and one division by a small prime to
evaluate the expected savings provided by our algorithm.
We highlight here that this is platform-dependent and
also depends on how well optimized divisions by a
small constant are. For numbers of size 512-bit we have
experimented (Mathematica4, Python and C++ with GMP)
and have found a ratio about 40 : 1, whereas for 1024-bit
numbers the ratio is about 1000 : 1.

Table 4 provides some experimental data, obtained as
follows. We produce two co-prime smooth 100-integers,
that is, their largest prime factor is the 100th prime and
also impose restrictions on the exponent used. The table
provides the interval for the exponents, the average size
of the numbers produced and – the most important
component – the probability that the sum of these two
numbers will be prime. Table 5 showcases the expected
savings in terms of the number of modular exponentiations,
needed to be performed – on average – until finding a
prime number. The sizes of the numbers are like in the
previous table.

5.2.1 Detailed computational complexity analysis
Existing RSA key generation algorithm contains trial
divisions to test the existence of small prime factors,
and a primality testing algorithm, which takes exactly
one modular exponentiation. Hence, the computational
complexity of such techniques, which we denote by cc, is
based on the formula:

cc = td+me,

where td is the number of trial divisions and me is the
number of modular exponentiations.

Our proposal to fast generate primes uses the same
number of modular exponentiations but replaces the trial
divisions with the generation of random numbers based

4. Wolfram Mathematica (https://wolfram.com/mathematica/).

on smooth integers. That involve only multiplications
between pre-computed powers of small primes. So, the
computational complexity for our algorithm, denoted by
cc∗, is given by:

cc∗ = me+ sm,

where sm is the number of multiplications needed for the
generation of smooth integers.

Let us calculate the computational complexities in the
case of 1024-bit RSA private keys, which, of course, need
to generate a 1024-bit prime number. First, we compute the
number of trial divisions td. With our technique, we produce
a random number with a chance for being prime about 1 out
of 50. Hence, we need on average 50 numbers to survive
the trial divisions before succeeding the Rabin-Miller’s test.
That means that we have computed all the 150 trial divisions
by small primes 50 times, i.e., 150 ·50 = 7500 trial divisions.
Furthermore, since the probability that a randomly chosen
odd number of this size is prime is about 1 out of 350, we
have to consider that we will perform only one division
when we test divisibility by 3 (i.e., 1/3 of the time), only
two divisions when the number is divisible by 5 but not
by 3, and so on. It is possible to calculate that the average
number of trial divisions is actually only 5. So we need extra
300 ·5 = 1500 divisions. To sum up, the number of modular
exponentiations for the two approaches is the same, but:

• With trial division based primality testing algorithms
one needs approximately 9000 (expensive) multi-word
divisions;

• With our algorithm one needs approximately 7500
(inexpensive) multiplications.

Table 6 showcases the time savings when using our
algorithm compared to a trial-division based algorithm.
The library used is NTL5. The results with Mathematica are
almost the same. Again, if one uses different libraries, the
improvements can be quite different, but for sure there will
be improvements.

5.3 Discussion of the results
The exact savings depend on the ratio between modular
exponentiations timings and multi-word division timings.
In sharp contrast with the case of modular inversion (over
prime fields) and modular multiplication, when the ratio
80:1 is usually assumed as a standard, in this case we have
no universally accepted timing ratio for these two problems:
modular exponentiations and multi-word divisions. And
it is clear that this ratio depends on the dynamic range
of the computations. For example, the decentralized key
generation part of the Ligero MPC protocol [28] uses primes
up to 853. This is exactly the 150th prime number. In other
computational number theory products it is recommended
to test primes up to 100, which takes only six times less
for this particular part of the algorithm. More to the point,
if one attempts to generate a 1024-bit prime, the time
for the modular exponentiations (necessary to execute the
Rabin-Miller test) is considerably smaller (about eight times)
in comparison to the 2048-bit modular exponentiation. In

5. NTL: A Library for doing Number Theory (https://libntl.org/).

https://wolfram.com/mathematica/
https://libntl.org/
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TABLE 4
Experimental data based on the generation of two co-prime smooth 100-integers.

Exponent range (1, 2) (1, 2, 3) (1, 2, 3, 4) (1, 2, 3, 4, 5)

Average size of the numbers generated 450 bit 712 bit 1000 bit 1313 bit

Probability to obtain a prime number generated by adding
two 100-integers 2.9% 2.1% 1.7% 1.45%

TABLE 5
Expected savings in terms of number of modular exponentiations through the usage of smooth numbers.

Exponent range (1, 2) (1, 2, 3) (1, 2, 3, 4) (1, 2, 3, 4, 5)

(a) Expected number of modular exponentiations to test a
random integer for primality 156.5 243.9 344.8 476.2

(b) Expected number of modular exponentiations to test for
primality an integer produced by our algorithm 34.5 47.6 58.8 69.0

Improvement factor (a)/(b) 4.53 5.13 5.86 6.90

the latter case, the contribution of the trial division part
of the primality testing algorithm will be much smaller
in comparison to the former case. To summarize, in the
case of modular exponentiations, doubling the size of the
exponent and the modulo leads to increasing the modular
exponentiation timing by a factor of about eight, whereas
for the trial division the multiplicative incremental factor
is only about two. This is the reason why our algorithm
saves a lot in the case of 512-bit primes, less in the case of
1024-bit primes and only marginally in the case of 2048-bit
primes. The timings that we have reported are based on our
experiments with NTL. It is clear that with different libraries
one can get different numbers. So, the important facts – from
a practical point of view – are:

• The algorithm always leads to savings in comparison to
algorithms that use trial divisions.

• The savings become smaller as the size of the primes-
to-be-generated becomes larger;

• the actual savings can greatly differ depending on what
library is used for the actual implementation.

• The most critical component is the ratio: time for a
modular exponentiations over time for a multi-word
division.

TABLE 6
Time savings when using our algorithm for different key sizes.

Key size (in bits) 512 1024 2048 4096

Time savings 30.4% 12.1% 2.9% 0.8%

6 REAL-WORLD APPLICATIONS

6.1 Implementation

The RSA key generation algorithm proposed in the paper
is rather straightforward to implement. To summarize, one

generates several smooth numbers based on the following
conditions: two of the smooth numbers are co-prime, the
other numbers are smooth and divisible by all small prime
numbers up to the limit selected and all these numbers
are added. After that, one directly applies the Rabin-Miller
testing, since it is guaranteed that there is no need for
trial divisions. A programmer interested in using the
technique has to do only one thing, that is to check the time
ratio between the trial multi-word divisions and the time
for generating and adding smooth numbers. Since those
procedures will differ vastly over different platforms, the
only pragmatic judge of the computational savings is by
direct computational experiments.

Programmers have realized the necessity to avoid trial
divisions, if possible, some time ago and there were other
attempts to achieve this goal. The most (in)famous example
is, perhaps, the primality generation software at the RSALib.
This library is widely used in practice. Until just a few years
ago, they used the following procedure to produce random
numbers that are subject to Rabin-Miller’s test. The number
p is generated as

p = k ·M + (65537a modM), (9)

where M is the product of the first n small primes. n = 39
is used to generate primes with binary length [512, 960] bits,
while n = 71, 126 and 225 are used to generate random
numbers with binary lengths [992, 1952], [1984, 3936] and
[3964, 4096] respectively. The two parameters, k and a are
unknown and randomly selected.

This way of producing random numbers guarantees
that the numbers produced will be NOT divisible by the
first n primes. However, it has been discovered [33] that
this algorithm for producing random numbers generates
keys that can be successfully revealed by the Coppersmith’s
attack [34]. The reason is that this method for key generation
leads to an unintended disclosure of sufficiently many bits
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of the secret keys that allows a successful application
of this attack. After the discovery of that fatal flaw, the
key generation procedures in RSALib were immediately
modified. The reader can find all the details in [33].

The algorithm proposed in our paper does not reveal
any bits of the keys and produces random numbers
with very high entropy. Thanks to that it is secured
against the Coppersmith’s attack, which is another positive
characteristic of it.

6.2 Application scenario
There are at least three practical scenarios that can benefit
from the findings in this paper.

6.2.1 Classical implementation of RSA algorithm
The selection of the main parameters of the RSA algorithm
– the private and public keys – can be done faster if one
uses the techniques proposed by us. The idea to use shared
RSA keys was proposed first by Boneh and Franklin 24
years ago in [32]. This is the first paper that actually
considers the problem: how to generate a certain amount
of random numbers (produced by different users privately
and independently) in such a way as to maximize the
chance that their sum would be a prime number. Since
the specifics of the Boneh-Franklin protocol requires the
primes to be of the form 4k + 3, the initial solution that
they propose is this: one user produces a random number
congruent to 3(mod 4), the other users produce random
numbers divisible by 4 and they implement secure multi-
party summation algorithm afterwards. In this case, if we
need 1024-bit shared RSA keys, we will need approximately
350 communications rounds in order to have a reasonable
chance to obtain a secret RSA key (e.g., a 1024-bit prime).
If the users use our smooth number technique, then the
number of rounds will be reduced to only about 50.
This is the reason why we claim the reduction of the
communication complexity.

However, we admit that the original paper by Boneh and
Franklin was aimed at showcasing the principle possibility
of sharing RSA keys in a secure manner and not on the
implementation specifics. It is the implementation specifics
(actually, only some of them) that we address. Since the
goal of the original paper was different from ours, we
do not include here a direct comparison. The previous
analysis clearly outlines the advantages of the new proposed
technique.

6.2.2 Decentralized environments
Our approach is particularly attractive for decentralized
environments. In this case we offer a fast procedure for
different parties to produce shared RSA keys. In this
case the reduction of the communication complexity is
considerably more important than the minor computational
complexity savings. This is a very essential problem in
modern blockchain architectures, where different parties
may want to have (and use) the same public key, but this key
has to be generated in a way that does not allow any of the
parties to have access to the private keys. If different parties

make use of the technique based on smooth integers that we
propose in the article, this generation can be accomplished
in a rather efficient manner.

6.2.3 Verifiable delay functions

Since the introduction of the so-called Verifiable Delay
Functions (VDFs) in 2018 [35], there has been a significant
interest in this cryptographic primitive. These functions can
be used in many applications aimed at creating protections
against denial of service attacks or generating random
numbers in a distributed way, to name but a few. One of the
main showstoppers (perhaps, the only showstopper) for the
successful applications of VDFs is the slow generation of
shared keys. Our algorithm is a step forward in removing
this obstacle.

We have to admit that in order to make VDFs widely
used, we need more speed ups than the one we offer here;
still, our approach, combined with additional computational
optimizations, could lead to an ultimate solution of this
problem. We have done research in this field over the last
few months and published one article that clarifies specific
details [36].

7 OPEN PROBLEMS

In this paper we have showcased one possible application of
smooth integers, aimed at a faster generation of large prime
numbers. The most direct application is the generation
of the RSA keys, but of course any other cryptographic
schemes that require a fast generation of prime numbers
can benefit from such a discovery. We have also provided a
lot better estimate of the number of iterations sufficient to
find a sparse representation of a given number as the sum
of s-integers.

It is our understanding that the most important part of
the article is the proposition of the new one-way function.
From a purely arithmetic point of view, it has a much
simpler computational description, since one only needs to
generate two smooth numbers and add them. There are at
least two potential applications of such a function:

• One of the most powerful computational complexity
features of the one-way function, discovered in [10],
is that any one-way function can be used to build
an efficient pseudo-random number generator (PRNG).
The exact, optimized design of such a PRNG is a matter
of on-going research within our group.

• Since our one-way function is dual to the factoring
problem (e.g., instead of prime numbers we use
numbers with small prime factors only, and instead
of multiplication we use addition), it seems natural to
try to develop a new, competitive to RSA public-key
encryption system. Whilst there is no theoretical result
that guarantees the existence of such an encryption
system, the extreme simplicity of the proposed one-
way function is an appealing feature. We hope that
this will inspire researchers in the field of public-key
cryptography, and computational number theory in
attempting to discover such an encryption scheme.
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8 CONCLUSIONS

In this paper we showcase the possible use of smooth
integers for various cryptographic problems of substantial
importance in the world of decentralized ledgers.

On a concrete level, we propose an algorithm for
selecting shares of different communicating parties in
a way that can significantly reduce the communication
and computational cost of producing RSA keys. With the
increase of the dynamic range, the savings provided by
our algorithm decrease. But it is important to clarify that
it does not slow the performance of the primality testing
procedures, simply the elimination of the trial division
phase is becoming less and less important as the size of the
numbers to be tested for primality increase. This is due to
the high computational cost of the modular exponentiations
compared to the division by small constants.

On a more abstract level, we showcase an unusually
simple one-way function to be researched either as a tool for
creating a new public-key cryptosystem, as a hash function,
as a cryptographic puzzle. Or maybe something else?

APPENDIX

The example proposed in Table 7 is a representation of one
of the factors of the RSA challenging number RSA-512.
This is a 65-decimal digit prime number (p65) used to
just showcase its representation as the sum of 5-integers.
This example demonstrates in a pictorial way the work
of the greedy algorithm described in the sketch of proof
of Theorem 3 aimed at finding short smooth integer
representations. After every single iteration of the greedy
algorithm, the number of bits of the difference between
the original number and the closest to it smooth integer is
reduced in accordance to Theorem 2.

We offer some brief numerical data with the same testing
number (p65) in the case s = 2, 3, 4, 5 and compare the
findings with the conjecture that the complexity of the
greedy algorithm aimed at finding the representation of a
number n as the sum of s-integer terminates after about
( 2s + o(1)) logn

log logn steps. We applied the same program used
to find representations as the sum of 5-integers, in Table 8.
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