EcOLE NORMALE SUPERIEURE DE RENNES

INTERNSHIP REPORT - ICUBE LABORATORY - TEAM RESEAUX

Tangle analysis for IOTA cryptocurrency

Author: Supervisor:
Vidal ATTIAS Dr. Quentin BRAMAS

August 23, 2018

Abstract

In this paper, we analyse the Tangle structure, we will present a multi-agents model,
study some properties and define two algorithms to compress in an optimal way the Tangle.

Intership done from May 22 to July 20 2018 in the iCube Laboratory under the supervision of
Quentin BRAMAS, iCube-CNRS.

Contents

Introduction 1
2 Context 1
3 Multi-agents model 3
3.1 Contribution 3
3.2 Validation s 4
4 Compression algorithm 7
4.1 Contribution e 7
4.2 Validation L 8
4.2.1 Byexistingedges 10

422 Byinclusion 10

5 Conclusion 14

lock O lock 1 lock 2

indax: 0 index: 1 index: 2

timestamp: 17:15 1/1/2017 timestamp: 17:17 1/1/2017 timestamp: 17:19 1/1/2017
data: “blockOdata data: “blockidata” data: “block2data”

Black 0 Hash = 00000...101010 Block 1 Hash = 00000107110

Genesis Hash =0 4
+MNonce 1 / +MNaonce 2 /
Block Hash: 00000 ... 1010704 Block Hagh: 00000 .., 1071109 Black Hash = 0000000msxsmns

*

Figure 1: Blockchain schematic

1 Introduction

Distributed database is a thriving emerging new technology, which has undoubtedly a great
potential to bring opportunities such as cryptocurrencies or the Internet of Things (ioT) appli-
cations. Both of them are also blooming fields which gain in importance. However, having a
distributed and decentralized database has many inherent problematics such as Byzantine Fault
Tolerance (BFT) [5] [1], complexity, difficulties to maintain the data integrity [3]. Nonethe-
less, the benefits outnumber the flaws, it allows a full transparency, availability, robustness and
scalability.

In the last few years, some technologies have emerged such as the blockchain [6], a ledger
composed of blocks each referring to the latest one, which aim is to provide a efficient structure
for decentralized databases. The key idea is to agree on a consensus, which means being able to
rely on the agents issuing data in the network. The main idea proposed is the proof of work which
consists in proving that an agent has enough computation power to be considered trustworthy,
i.e. spending such a power that a malicious attack is vain. However this solution has a lot a flaws,
in particular the bitcoin cryptocurrency, based on the blockchain, has a dramatically expensive
energy consumption [2]|. Thus, there is a clear need of a new type of consensus, which guarantees
security but has a low environmental footprint.

A new technology has latterly gained interest in the distributed ledger field, which is the
Tangle, described in a white-paper. |7] The Tangle structure is based on a directed acyclic graph
representing the ledger and the consensus relies on the confirmation rate for each site. Each node
represents a transaction and an edge represents a confirmation. Then the more a transaction is
confirmed by the recent ones, the more it is considered trustworthy. Nevertheless, it is a really
young technology, and is not yet well understood. There is a lot of study to lead on the Tangle
properties and this structure may have a really huge size with time, preventing from performing
heavy computations.

This paper will be structured as following, first we will define the context and explain our
model and the different parameters available, then we shall explain the results of the simulations
obtained and finally we will present the Tangle compression.

2 Context

The first paper published about the Tangle, the white-paper [7], presents a directed acyclic graph
in which each node is called a site. The structure works the following: each site corresponds to
a transaction issued in the network, and each transaction has to "confirm" k older transactions
and an edge between two sites means that the later confirms the older. The very first site
present in the Tangle is called the genesis and may be considered as the basis of the Tangle.
The subtility is that a new transaction may confirm only sites which has not been confirmed yet,
we call them tips. The white-paper suggests to take k = 2 and is followed by almost the whole

Figure 2: Tangle schematic - the tips are in grey

recent litteracy and the IOTA cryptocurrency. We say that a site indirectly confirms another
one if there is a path between them in the graph.

In order to get a real graph instead of a linear graph as for the blockchain, we define an inher-
ent latency, noted &, which represents the time of Proof of work needed to issue a transaction. A
node cannot be seen as added in the Tangle during the h period, thus the tip it confirms is still
considered as a tip during this period which allows another site to confirm it. The white-paper
model suggests to define a constant latency for all the agents in the network, and in particular,
the agent who issued the transaction is also affected by this latency.

Metrics The white-paper also defines two metrics for the Tangle, based on the weight of the
nodes. We define the self-weight of a node as being a inherent value, often considered as
dependant of the proof of work needed to issue it, but sometimes considered as constant. We
then define the score, which is the sum of the self-weight of all the sites indirectly confirmed
by the considered site and the cumulative weight as the sum of the self-weight of all the sites
indirectly confirming the considered site.

Tip selection algorithm The major stake of the Tangle structure is the tip selection way
while issuing a new transaction. Indeed, we do not want to impose a selection algorithm in the
network, but we do want a consensus which guarantees the Tangle’s security against conflict
transactions which would lead to serious branching of the strucure. If an attacker has the ability
to take control of the Tangle by chosing special tips, it’s a critical security issue. Thus, we have
to make up tips selection algorithms which, if widely adopted by the network agents, implies
people not using it to be inefficient in the Tangle, which means their transactions have low
chances to be widely confirmed.

Uniform algorithm The most naive algorithm is to choose uniformly the tips in the tips
set. This is really cheap to compute, because an uniform distribution is really easy to generate,
however it can lead to security threats, as it doesn’t rely on any confidence metric, such as
the score or the cumulative weight, then in case of two conflictual branches, no one would be
favorised, leading an attacker to take benefit of that.

Markov Chain Monte Carlo algorithm A second algorithm, called MCMC algorithm,
standing for Markov Chain Monte Carlo, consists of a random walker travelling the graph from

14000

12000

10000

8000

6000

Occurrence

4000

2000

30 40 50 60 70 80 90 100
Number of tips

Figure 3: Stabilisation around Lo

the genesis to one of the tips. For each iteration, it chooses the next site with a probabil-
ity according to its cumulative weight. The greatest the cumulative weight, the greatest the
probability to jump to. This algorithm has the advantage to promote the main branch, as its
cumulative weight is going to grow, however it is very sensitive to the inner topology of the
Tangle, which is really complicated to predict.

Computing issues The main issues in the current context are numerous. First of all, we
don’t have yet a multi-agent consideration of the network, the white-paper considering a single
agent issuing transactions. Secondly, the MCMC algorithms is really complicated to implement
as for now, we do not have a computationally easy way to compute the cumulative weight for
the sites as it changes with time. Furthermore, performing a random walk in the tangle is really
expensive in termes of computation as the Tangle can easily have millions of sites in a long time.

Theoretical analysis The white-paper presents then some theoretical properties wished. In
particular, one should expect the amount of tips over the time to fluctuate around a convergence
value. Let’s take the white-paper’s notations, let L(t) be the number of tips over the time, the
desired property is that tl'g]fr}lo P(L(t) = Lg) exists and is positive with Ly the convergence value.

The reason is to limit the "left behind" tips, i.e. the tips which are never going to be confirmed
because of the tip selection algorithm’s design and then breaking the Tangle’s efficiency.

3 Multi-agents model

3.1 Contribution

As described earlier, the current litteracy does not mention any multi-agents model for the
networks, as it is a major charateristic of a distributed database. We had to design a multi-
models model which represents a realistic use of the Tangle.

We assume that the process of incoming transactions can be modeled by a Poisson point
process. Let A be the rate of that Poisson process. Each time a transaction has to be issued,

Evolution of converging value in fuction of the number of agents; A =4; h=10 Evolution of the converging value in function of the number of agents; A=16; h=20

Converging
value s00

560

540

520

3 200 400 600 800 1000 3 200 200 600
Number of agents Number of agents

the simulator choses uniformly an agent and it has to chose two tips, issue a new transaction
and notify all the other agents it has issued the transaction. The notification is modelized by a
requests with a recipient and a delivery time, stored in a buffer, which contains the non-delivered
requests. The delivery time is the current time plus the latency between the two agents. Each
agent is assumed to have a certain self-latency to the network core, then the latency between
two agents is the sum of their self-latencies, except that the latency between an agent and itself
is zero, although we could have a design where an agent could have a self latency.

Each agent has a local view of the Tangle, which is updated for each notification received.
Thus, when an agent issues a transaction, it can immediately see it, it doesn’t have to wait,
which allows it to confirm it immediately if it is willing to issue multiple transactions, preventing
the tips size from growing too much.

We developped a C++ simulator firstly based on this design, which has been used for all
the results displayed in this paper, however, this design has some flaws. The first one is com-
putational. Indeed, have to deliver the request for each nodes is quite senseless, given that
the information is strictly the same, it then slowered the execution. The second flaw is spatial
consumption. Indeed, storing as many local views of the Tangle as the amount of agents is quite
ponderous, while the information was heavily redundant as the first sites should be visible by
the whole network after a certain time. We ended by redisigning the whole simulator to comply
with the formalization defined in [4].

3.2 Validation

The validation here is based on two main parameters. First of all, we want to check if we
can find out a similar behaviour than the white-paper predictions, mainly about tips amount
stabilization and then study the differences that our model implies. We had only time to test
the random algorith, although it would have been really interesting to test also the MCMC.

As stated by the white-paper, there should be a fluctuation of the amount of tips around
a certain value. According to the white-paper, this value should be Ly = 2kA in a continous
model, then depending only on the inner latency and the Poisson rate of incoming transactions.
When we first tested the simulator, with 10 agents, we effectively found a stabilization but with
a factor significantly less than two, no matter the values of & and A. We then realized that
changing the amount of agents changes this factor. Then the amount of tips Ly = f(Nz)hA
where N, is the amount of agents and f a function of N, which remains to determine. We then
decided to plot the variation of LO according to Na with constant values of h and A and the
results are in 3.2.

The results of this study is that f(N,) converges to 2hA when N, becomes high, and reaches
the convergence value approximately with 200 agents. That means that more agents should
not change Lo which is a really good property, because 200 agents is quite a low value for a

Evolution du nombre de tips pour un agent en fonction du temps, lambda et la latence

lambda=2 latency=2
—— lambda=2 latency=10
lambda=2 latency=18

500

400

w
S
3

W’WM“‘W’M;W/’W/W Vw“’wr \fﬁl\'\\lﬁmw

Nombre de tips

~
S
S

100

0 200 400 600 800 1000
Temps

Figure 4: Evolution of the number of tips over time, A and h

network, besides, the amount of agents may fluctuate a lot with time, this stability is then quite
interesting. However, in our model, we do consider that A is independant of N, which is not
necessarily true, but one could consider the network to settle the A value.

We then studied the convergence time to Lg. The protocol is the following. The convergence
time is defined as the time to reach 95% of Ly. Then we derive a time constant 7 as in an
exponential law which is a third of the convergence time. It turns out that we found a linear
relation between the convergence time according h but no variation according to A, with a factor
of 5.8 thanks to 4. Then a first approximation of L(t) would be L(t) = f(N,)hA(1 — e>88WNa)ht)
where g(N,) would be the impact of N, on the convergence time. There are many chances
g(N;) =1 but as we haven’t tested on N, it is uncertain.

Finally, we wanted to study the differences between the local views of each agent. The
main parameter we focused on was the amount of tips visible by each agent and the amount of
tips actually present in the global Tangle, which can be seen as an omnicious agent aware of
everything instantly. A simulation sample can be seen in 5. One can see a really distinct curve,
the brown one, which represents the amount of tips in the global Tangle, the other one being
the agent’s tips. We can see there is really few variation between the agents, each of them have
merely the same amount of tips. One remarkable thing is that there seems to be a dependance on
A. Indeed, we have set a latency of 4 seconds, and as we stripped the plot with 4 seconds width
strips, we see, especially at the beginning a different behaviour for each strip. In the first one, it
is hard to see, but each agent has the same amount of tips, an only one, because of the latency it
can only confirm its own sites, and the global Tangle tips grows until reaching the value n, with
n being the number of agents, which is logical, the global Tangle beeing the genesis and 7 linear
branches because of the latency. One should notice that the global Tangle’s tips is reaching n
because we have h great enough to have an agent to generate a site and thus adding its own
branch to the Tangle. Afterward, the amount of tips can increases greatly because the agents
can confirm already confirmed tips because of the latency, then adding a tip to the global Tangle
without removing a former one and finally stabilizes around a converging value, as predicted in

[7].

700
600
500

400
Number of tips
for each agent

300

200

LA

0 5 10 15 20 25 30 35 40

Time (s)

Figure 5: Amount of tips for each agent over the time

There is one really interesting thing, the global Tangle’s line seems to predict the behaviour
of the agents for the next strip, which is unexplained yet, but could be a really interesting
research.

4 Compression algorithm

4.1 Contribution

As explained in the introduction, we have critical issues in implementing the MCMC tips selec-
tion algorithm as computing the cumulative weight and performing a random walk are really
expensive operations. Many ideas have come up, as computing a look-alike cumulative weight
or performing the random walk form the middle of the Tangle. However, these solutions also
present flaws in terms of security and accuracy.

We are presenting in this section a way of compressing the Tangle into a really short new
Tangle, having the same tips set and conserving the most important properties of our tangle.
Firstly, the compressed Tangle preserves the original accountancy, which means that for each tip,
the confirmed transactions are strictly the same, and secondly, it preserves the global topology
of the original Tangle and allows really similar random walks.

The main idea of the compression, is to agregate the existing sites according to the set of
tips confirming them, i.e. creating equivalence classes. As the major part of the sites should be
gathered in really long branched, a whole branch could be resumed as a single site.

We suggest here two algorithms, which have a different design but have almost the same
compressed Tangle, with a subtil difference. The construction of the new sites is the same, their
are in both cases the equivalence classes of confirming set of tips. The difference lies in how they
connect the edges. On the one hand, we have an algorithm which makes an edge between two
new sites if there is an edge between a site of each of them in the original Tangle, on the other
hand we have an algorithm which takes benefit of a particular property of inclusion of the new
sites.

Formalization We define the notation A ~» B which means "A indirectly confirms B". In
other words, there is a path between A and B.

Let’s consider our Tangle as a directed graph G = (S, E), S being the sites set and E € SX S the
set of edges. We besides define T C S the tips set, i.e. T={t €S |Vs €S,(t,s) ¢ E}.

Let’s define the application C : S — P(T) such as C(s) = {t | t € T, t ~» s}, i.e. associates to
each site the set of tips confirming it.

Now we build C = {C(s) | s € S} € P(T) the set of equivalence classes in the Tangle.

Now we define the "inverse function" of C, which is C™! : C — P(S), such as C7'(c) = {s |
C(s) =c}.

Thus, we call our new compressed Tangle’s G’ = (§’,E’) and we have §” = C. The remaining
set, E” will be generated by either of our algorithms.

By existing edges As described earlier, in this algorithm, we are going to connect the
former connected equivalence classes. More formally, (c,c’) € E’ iff 35 € C(c),s’ € C7I(¢")
such as (s,s’) € E.

By inclusion In this algorithm, we use a property of the compressed graph which is,
c1 ~» co iff ¢1 C co where ¢y # co, which will be demonstrated later.
We begin by sorting C in a descending order, and then we add

Algorithm 1 Site.Append|()
Require: S the set to add
Bool appendedToChild « False
for all child in childs do
if S C child then
appendedToChild « True
child.Append(S)
end if
end for
if S Cthis and appendedToChild == False and S not in childs then
childs.append(S)
end if

Algorithm 2 Compressed Tangle construction
Require: G’ the equivalence class of the original genesis, S the set of all equivalence classes in
an descending order in terms of cardinality
for all s in S do
G’.Append(s)
end for
return G’

Cumulative weight Computing the cumulative weight with the compressed Tangle is really
efficient. First, we have to define the self-weight of the new sites. The weight of each of the
new sites is the sum of the self-weight of each original sites now composing the new one. More
formally, Vs’ € S, H(s) = X5ec-1(r) H(s). One may understand here quite easily that computing
the cumulative weight is way more faster, since computing the self-weight of the new sites takes
a constant time while compressing, and as the cumulated weight algorithm on the compressed

Tangle is the same as the original ones, then if the compressed Tangle is small enough, then
performing it would be far less expensive, especially if the algorithm is not linear, say quadratic.

4.2 Validation

Proof of correctness We need to have formal proofs of our algorithm in order to have
guarantees that our compression does work efficiently.

Definition 1. We define the operator - as following :
VYt € T',t is the only element in t

In other words, this operator does give for a certain tip present in the compressed Tangle
the only original tip.

Let us begin to define a new property, which is the accountancy correctness. We say a
compressed tangle G’ = (S’,E’,T’) is and accountant compressed Tangle of the Tangle G =
(S,E,T) and we note G’ |= G if each tip validates exactly the same transactions.

Definition 2. We say G’ |= G if Vt € T/,Vs’ € §',(t w s’ &= Vs € C7I(s),t ~> 5) which
means that every site validated by a site has to be validated by it in the compressed Tangle.

Lemma 1. Vs,s’ € S,s w s’ = (C(s) C C(s')

Let s,s” € S. We have defined C(s) =t €T |, t w» s.
Let t € C(s), then t ~» s, with s ~» s/, then t ~» 5.
We obtain that t € C(s’)

Hence C(s) € C(s”)

Proof.

4.2.1

By existing edges

The Tangle’s main property to preserve is the accountancy

First way

Proof.

Let t € T’, s’ € §’ such as t ~» s’.
Let us show that Vs € C7I(s), f ~> s.
We have t ~» s, then In > 2,3cy,...,c, with ¢4 =, ¢, = s’ such as

€1 = C2,...,Ch = Cy

Let us now show by induction, Yk € [2,n],Yc € C~(cx), c1 > c.

Base case: k=2

We have ¢; — co, then Js; € C71(s1),52 € C7Y(s2),51 — s by definition.

Then C(s1) € C(s2) then ¢ € C(s2).

Then VYc € ¢9,¢1 — c.

Step case: k € [2,n — 1] Let us assume Yc € ¢, ¢; » ¢, we have to show that
VYc € cppq,C1 ™ C.

We have cx — Cis1, then 3sg € C7(sx), skv1 € C71(sk), Sk — Sk+1 by definition.
Then C(sx) € C(sk+1) then ¢; € C(sk11).

Then Vc € cy41,61 — c.

Conclusion We can conclude here, Vs € C71(s”), t ~» s.

Second way

Proof.

4.2.2

Unfortunately, we haven’t been able to perform the proof of this algorithm because we changed
lately the formalization, thus making the proofs all over again was time consuming. However,
the proof can be led using a loop invariant, each time we add an edge, we can prove that for
the resulting temporary Tangle G, there is a subtangle G of the original one such as G |= G and
prove that at the end of the loop, the subtangle is the whole original one. However, this proof

Let t € T and s € S such as t w» s.
Let us show that C(t) » C(s).
We have t ~w» s, then dsq,...,s, such as

51 —582,...,51-1 ™ Sn
Then Jcq,...,¢, € S’, with ¥ < n, ¢c; = C(t) and ¢, = C(s) such as
€1 —C2,...,Cno1 = Cn

Conclusion: we have C(t) »» C(s).

By inclusion

is for a later research.

Simulations We have performed some simulations in order to test the compression efficiency.
We have focused on the compressed Tangle’s size, thus there are no differencies between the two

algorithms.

Evolution of the compression with the original tangle's site, number of agents = 10, h = 10, lambda = 1

80

60

40

Number of sites after compression

204

0 10000 20000 30000 40000 50000
Number of sites before compression

Figure 6: Compressed Tangle’s size in function of the original size

We have tried to test the compression’s limits particuliarly the evolution of the compressed
tangle’s size with the original tangle’s size. In the figure 6, one can see there seems to be a
stabilisation, which is quite intuitif, because the equivalence classes may join at a certain time.

In the figure 7, we have tried to see the evolution according to A and h. However, although
we can see an evolution for low values of A and h, we can see a fall then a plane of really low
values. This is due to our simulation time which was too small, yielding to tangles not grown
enough to have an efficient compression. The we shall run other simulations, but they are really
heavy and the current plot remains interesting.

Algorithm’s limits Although being performant for specified criteria in the Introduction, this
algorithm has some issues. Firstly, the computing complexity for the connecting edges version
is quite heavy, because of a multiple graph iteration.

Furthermore, there is a lot of information loss. Indeed, one does not know anymore which
site contained which transaction inside an equivalence class, everything is all mixed up. We
could save these informations by using a data structure saving them in the new sites, but there
would be memory growth.

Besides, this algorithm is statical, it doesn’t compress the Tangle on the fly, and also we
have to keep in mind that the set of tips a agent sees at a certain time is not necessarly the
same the others see because of the latency, thus, performing this algorithm could lead to serious
problems. We have some solutions here.

We could perform the algorithm at a certain time and compress the Tangle at a state it was
at the current time minus a "safety time". The safety time being the delay to be sure each
change in the graph seen by an agent has been also seen by everybody. In our model, this is
quite simple to do, because the latency is constant, however, it could be dangerous for real life
situations.

10

Compressed Tangle’s size

2500
2000

1500

1000

Y
)
)
4
(X
)
(X
)
)
9
0
(0
%

0
X/
0
)
0
()
)

'o,",,'o
s
)

()
"0
ol
)

1
(/

)

500

0
%
%
)
/
()
9
)
g
Y
D

",
:’:
o/

%

X
g
X
1,
0
()
0
X
(A
X
%
1
%

()
%)
g
()
o/

)
0
)

9
)
%
)
%,
',/
0
)
X
()
)
()
X
b
)

v
4
Y

W
s
i
)

(A

)
03
;/
)
(

0

0

%,
%,
Y
9

/)
)

1000

y
0
)
)

)
7l
)

i

10

Y
it
%

)
4
@

g

)

%

)
i
i

)

S

)

)
%
%

)

15

o
¢'l

(";"
%)

>

¢

20

Figure 7: Evolution of the compressed size in function of A and h

The second solution would be to keep a trace of each existing site and store it in the com-
pressed sites in order to know to which new site connect an edge when a new transaction arrives.

Another problem is to know when and how to perform the algorithm. The point is that
having a compressed Tangle is only an accomodation for the agents and it is still compatible
with the non-compressed Tangle if the right structure is chosen. This means that if an agent
has decided to compress the Tangle and the rest of them not, it can still work with them and
exchange transactions. However, we could define that some agents in the network are dedicated
to compressing the Tangle and broadcasting it in the network, but there would be consensus
and security issues. Thus, we think that the compression should be the very own choice of the
angents. Regarding the compressing frequency, we do not have answers yet. As the compressed
Tangle’s size seems to be constant, this operation should be constant in terms of computation
complexity, then performing the algorithm really frequently might not be a bad idea. A last

idea would be to consider the compression as a proof of work.

5 Conclusion

In this paper, we have presented a multi-agents network model, allowing us to show that although
there is a variation with the number of agents, there could be stabilization around 200 agents,
which means that for a real implementation, there should not be scalability issues. Furthermore,
the convergence time, i.e. the time to reach Tangle stabilization seems to be independant of the
temporal rate of transactions, which is the most complicated parameter to enforce in our model.
This means that a change of parameters in the network, such as h or A, should not induct a

variation for a time longer than the stabilization time.

We have also presented two compression algorithms, which compess the Tangle in order
to perform faster cumulative weight calculus and MCMC tip selection algorithm. The most

11

algorithms

nd the existing edges

between the inclusion a

12

interesting property empirically found is that the size of the compressed Tangle seems to fluctuate
around a certain value, which is really attractive, meaning that the MCMC algorithm can be
considered as performed in a constant time.

Many gray areas are remaining. Concerning our multi-agents model, there is a lack of
simulations according to the parameters, especially concerning the convergence time according
to the number of agents, and the stabilization of the amount of tips in function of the number
of agents. Furthermore, a study of the other tip selection algorithms is mandatory, as it could
reveal other behaviors.

Concerning the compressing algorithm, we have to perform too many simulations, varying
the parameters to understand their impact. This is just a blueprint of the algorithms. We would
also like to test on the real IOTA data, in order to check the viability of the algorithm.

Acknowledgements

I would like to thank the ICube laboratory for welcoming me and letting me a great scientific
independance and always encouraging me in my research, and especially Quentin Bramas and
Thomas Noel for being really present and helpful.

I would also like to acknowledge the IOTA’s foundation help, especially Alon Gal for sharing
with me unpublished papers dealing with my multi-agent model, which have helped me to rectify
some details, and for reading my drafts about the compression algorithm and taking time to
discuss about it.

Finally, I want to thank the Ecole Normale Supérieure for giving me the opportunities to
develop a scientific state of mind which has allowed me to get into this internship with serenity.

References

[1] Alysson Bessani, Joao Sousa, and Marko Vukoli¢. A byzantine fault-tolerant ordering service
for the hyperledger fabric blockchain platform. In Proceedings of the 1st Workshop on Scalable
and Resilient Infrastructures for Distributed Ledgers, SERIAL ’17, pages 6:1-6:2, New York,
NY, USA, 2017. ACM.

[2] Alex de Vries. Bitcoin’s growing energy problem. Joule, 2018.

[3] Dr.S.B.Kisho D.S.Hiremath. Distributed database problem areas and approaches. IOSR
Journal of Computer Engineering (IOSR-JCE), 2016.

[4] Alon Gal and Clara Shikhelman. Partitioning in the tangle: a multi-agent extension. sub-
mitted.

[5] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382-401, July 1982.

[6] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system,”
http://bitcoin.org/bitcoin.pdf.

[7] Serguei Popov. The tangle. https://www.iotatoken.com/I0TA_Whitepaper.pdf, 2016.

13

